Density as the Segregation Mechanism in Fish School Search for Multimodal Optimization Problems

نویسندگان

  • Salomão Sampaio Madeiro
  • Fernando Buarque de Lima Neto
  • Carmelo J. A. Bastos Filho
  • Elliackin Messias do Nascimento Figueiredo
چکیده

Methods to deal with Multimodal Optimization Problems (MMOP) can be classified in three main approaches, regarding the number and the type of desired solutions. In general, methods can be applied to find: (1) only one global solution; (2) all global solutions; and (3) all local solutions of a given MMOP. The simultaneous capture of several solutions of MMOPs without parameter adjustment is still an open question in optimization problems. In this article, we discuss a density segregation mechanism for Fish School Search to enable simultaneous capture of multiple optimal solutions of MMOPs with one single parameter. The new proposal is based on vanilla version of Fish School Search (FSS) algorithm, which is inspired on actual fish school behavior. The performance of the new algorithm is evaluated and compared to the performance of other methods such as NichePSO and Glowworm Swarm Optimization (GSO) for seven well-known benchmark functions of two dimensions. According to the obtained results, presented in this article, the new approach outperforms the algorithms NichePSO and GSO for all benchmark functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization

In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...

متن کامل

MOUTH BROODING FISH ALGORITHM FOR COST OPTIMIZATION OF REINFORCED CONCRETE ONE-WAY RIBBED SLABS

In this paper, the optimum design of a reinforced concrete one-way ribbed slab, is presented via recently developed metaheuristic algorithm, namely, the Mouth Brooding Fish (MBF). Meta-heuristics based on evolutionary computation and swarm intelligence are outstanding examples of nature-inspired solution techniques. The MBF algorithm simulates the symbiotic interaction strategies adopted by org...

متن کامل

AN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM

This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...

متن کامل

A Comparative Analysis of FSS with CMA-ES and S-PSO in Ill-Conditioned Problems

This paper presents a comparative analyzes between three search algorithms, named Fish School Search, Particle Swarm Optimization and Covariance Matrix Adaptation Evolution Strategy applied to ill-conditioned problems. We aim to demonstrate the effectiveness of the Fish School Search in the optimization processes when the objective function has ill-conditioned properties. We achieved good resul...

متن کامل

A Hybrid Algorithm Based on Fish School Search and Particle Swarm Optimization for Dynamic Problems

Swarm Intelligence algorithms have been extensively applied to solve optimization problems. However, some of them, such as Particle Swarm Optimization, may not present the ability to generate diversity after environmental changes. In this paper we propose a hybrid algorithm to overcome this problem by applying a very interesting feature of the Fish School Search algorithm to the Particle Swarm ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011